A+ R A-

Неизвестный танк часть 5 - 7

Содержание материала

 

 


ПОТРЕБНАЯ НА ПОВОРОТ МОЩНОСТЬ

 

Такям образом, если Rрбольше В, к забегающей гусенице подводится мощ­ность N2из двух источников: от двигателя поступает мощность Nо, которая тратится на преодоление внешних сопротивлений, и от отстающей гусеницы — возвращаемая (циркулирующая)   мощность N1 так что   N2  = N0 + N1

Величина мощности, подводимой к забегающей гусенице, определяется силой тяги и скоростью и может быть, как и во всех других случаях, найдена по формуле 5P2v2.  Oчевидно, то же относится к отстающей гусенице; на ведущее колесо со сто­роны этой гусеницы действует тормозная сила P1при скорости v1. Таким образом, можно написать   

5P2v2  =  N0  + 5P1v1

Отсюда можно определить мощность, которую должен дать двигатель и которая пойдет на преодоление сил сопротивления повороту, т. е. мощность внешних сопро­тивлений                                

N0    = 5(P2v2  - P1v1 )                        (11)

Но, как мы видели выше в формуле  (10)  для случая R > B,

v1  / v2  =  1 -  B/R

Подставляя значение v1  / v2в формулу  (11), получим окончательно

N0 = 5(P2  - P1 (1- B/R))v2                    (12)

Определим N0  для R= 2В.  Из графика    (см.  рис.  482)    находим  P2  = 0,28Gи             P1= 0,2G. Тогда

 

Таким образом:

—  при Rp  = B/2 (первая передача и задний ход) N0= 3,8 Gv2;

—  при Rр = В   (первая передача  и заторможенная  отстающая  гусеница) N0= 1,7 Gv2;

— при Rр=2B (вторая передача и первая передача)    N0= 0.9 Gv2;

Чем больше расчетный радиус, тем меньшая удельная мощность не­обходима для поворота. То же следует и из выведенной нами фор­мулы  (12).

На рис. 489 приведен график зависимости мощности внешних сопро­тивлений от  расчетного радиуса, построенный по формуле (12).

Рис.489  Удельная мощность внешних  сопротивлений в зависи­мости от  радиуса поворота при скорости забегающей гусеницы  v2= 1 км/час

 

  Дляудобства пользования графиком даны удельные мощности, т. е. N0 / G,

а скорость забегающей гусеницы принята равной 1 км/час. Чтобы опре­делить мощность при повороте танка, например, весом 30 т при v2=10 км/час с радиусом Rр= 10 В, берем из графика величину N= 0,43 и, умножая на вес и скорость, находим N0= 0,43х30х10 = = 129 л. с.

Из графика следует, что мощность внешних сопротивлений умень--шается по мере увеличения радиуса поворота. Это объясняется тем, что мощность внешних сопротивлений при повороте определяется моментом, создаваемым силами сопротивления повороту, и угловой скоростью пово­рота, С увеличением радиуса поворота уменьшается и момент сопротив-ления (из-за снижения коэффициента μ) и угловая скорость.

Выше рассматривался пример, когда были включены первая и вто­рая передачи бортовых коробок. Можно включить первую и третью или первую и четвертую передачи. В этих случаях увеличится отношение между скоростями забегающей и отстающей гусениц и уменьшится ра­диус поворота, а потому возрастет мощность внешних сопротивлений. Вместо первой и второй передач можно включить третью и четвертую, при этом расчетный радиус (поворота изменится незначительно, но зато возрастет угловая скорость поворота, так как увеличится скорость забе­гающей гусеницы.

Число расчетных радиусов зависит от числа передач коробок. Приме­няемые на танках механизмы обычно соответствуют коробкам передач не более чем с двумя передачами, что дает два расчетных радиуса пово­рота (вторая — первая передача и одна из передач с нейтралью и тор­мозом).

 

ПОВОРОТ НА РАДИУСАХ, ОТЛИЧАЮЩИХСЯ ОТ РАСЧЕТНОГО

 


ПРОМЕЖУТОЧНЫЕ РАДИУСЫ ПОВОРОТА

 

Рассмотренные нами бортовые коробки обеспечивают определенное число расчетных радиусов. Это число увеличивается при увеличении ко­личества передач коробок, Применение непрерывных коробок передач дало бы возможность поворачиваться с любым расчетным радиусом.

Так как ступенчатые коробки ограничивают количество расчетных радиусов поворота, то среди них может не оказаться того радиуса, кото­рый необходим по условиям движения.

Чтобы танк имел возможность поворачиваться с любыми, а не только с расчетными радиусами, поставим в дополнение к коробкам передач по фрикциону (рис. 490).

 

Рис. 490  Потребная мощность при повороте без пробуксовкии с пробуксовкой фрикциона

 

Включим на забегающей гусенице вто­рую, а на отстающей — первую передачу. Допустим, что расчетный ра­диус будет при этом Rр==2B. Если по условиям движения необходимо поворачиваться с радиусом больше 2В, например с R= 10В, то для этого при неизменной скорости забегающей гусеницы нужно увеличить ско рость отстающей,

Заставим фрикцион отстающей гусеницы слегка пробуксовывать. Для этого, уменьшив нажатие на диски, дадим возможность ведущей и ведомой частям фрикциона вращаться с разными скоростями, но так, чтобы фрикцион не был полностъю выключен. Теперь отстающая гусе­ница, увлекаемая забегающей, сможет вращаться с большей скоростью, чем это позволяет передаточное число первой передачи. Так, если без пробуксовки при включенной первой передаче ведущее колесо делает 200 об/мин и нельзя изменить его обороты, не меняя числа оборотов дви гателя, то пря пробуксовке фринциона колесо может делать и 250, и 300, и любое большее числооборотов, но, конечно, не больше, чем делает ведущее колесо забегающей гусеницы: отстающую гусеницу ведет забе­гающая, обогнать которую отстающая гусеница не может.

Чем больше пробуксовка фрикциона, там меньше разница между скоростью отстающей гусеницы и скоростью забегающей и тем больше радиус поворота танка. Когда  фрикцион выключится полнюстью, скорости обеих гусениц почти сравняются, и танк будет двигаться почти прямо­линейно, с небольшим уводом в сторону отстающей гусеницы (как это бывает всегда, когда на отстающей гусенице не создается тормозная сила).

При помощи дополнительного фрикциона  танк может поворачиваться с любым радиусом, лишь бы он был больше расчетного (в нашем примере больше 2В). По мере уменьшения пробуксовки скорость отстаю­щей гусеницы уменьшается до тех пор, пока действительный радиус по­ворота Rне станет равен расчетному, т. е, равному 2В. Чтобы еще уменьшить радиус поворота, надо еще больше снизить скорость отстаю­щей гусеницы. На данной передаче этого сделать нельзя. Надо перехо­дить к низшему расчетному радиусу.

Благодаря пробуксовке фрекциона можно как угодно увеличивать радиус поворота сверх расчетного, но не уменьшать его. Расчетный ра­диус, следовательно, является наименьшим для данной передачи.

Поворот с буксованием фрикциона неустойчивый, так как в данном случае скорость отстающей гусеницы не бывает определенной. Она изме­няется в зависимости от сопротивлений, которые преодолевает танк; при этом изменяется и радиус поворота.

 


ПОТЕРЯ МОЩНОСТИ

 

Таким образом, даже при наличии единственного расчетного радиуса танк может совершать поворот с любым радиусом, лишь бы он был больше расчетного. Однако такой поворот сопровождается буксованием фрикциона, а следовательно, потерей мощности на трение. Чтобы выяснить величину потерь в фрикционе,  вернемся к по­вороту танка на расчетном радиусе.

Пусть ведущий вал фрикциона делает 2000 об/мин (рис. 490, вверху). Фрик­ционы не буксуют, и их ведомые валы также делают по 2000 об/мин. При включен­ных передачах коробок левое ведущее колесо делает 400 об/мин, правое 200 об/мин. Соответственно скорость левой гусеницы будет вдвое больше правой, например 20 и 10 км/час. Отстающая (правая) гусеница, стремясь развить скорость 20 км/час, толкает свое ведущее колесо вперед. Через коробку и фрикцион передается на забе­гающую гусеницу мощность, равная, скажем, 50 л, с. Эта мощность определяется тормозной силой и скоростью отстающей гусеницы. Двигатель развивает мощность 100 л. с, равную мощности внешних сопротивлений, а всего на забегающую гусеницу поступает 150 л. с.

Теперь дадим правому фрикциону возможность пробуксовывать (рис. 490, внизу). Частично освобожденное ведущее колесо отстающей (правой) гусеницы сможет вра­щаться с более высокой скоростью, допустим 300 об/мин (15 км/час). Поскольку ско­рость забегающей гусеницы осталась прежней,  радиус поворота увеличится.

Для упрощения примем, что тормозная сила при этом не меняется (хотя в дей­ствительности при увеличении радиуса поворота она становится меньше). Тогда ве­личина крутящего момента, передаваемого через фрикцион, не изменится, несмотря на пробуксовку фрикциона. Поскольку скорость отстающей гусеницы увеличилась в 1,5 раза, мощность, отдаваемая ее ведущим колесом, возрастет также в 1,5 раза и вместо 50 л. с. достигнет 75 л, с.

Передаточное число коробки равно 10. Значит, ведомый вал фрикциона, расположенный перед коробкой, всегда вращается в 10 раз быстрее, чем ведущее колесо, установленное за коробкой, и при 300 оборотах ведущего колеса будет делать 3000 об/мин. Ведущий же вал фрикциона, связанный с двигателем, как и раньше, делает 2000 об/мин. Крутящий момент, передаваемый фрикционом, также не изме­нился, так как тормозная сила осталась прежней. Значит, мощность, передаваемая забегающей гусенице, не изменится — она останется равной 50 л. с. Между тем к фрикциону подводится мощность 75 л. с. 25 л. с. затрачивается на преодоление трения между дисками фрикциона, т. е. превращается в тепло.

Если к забегающей гусенице требуется подвести 150 л. с., а отстающая дает 50 л. с, двигатель попрежнему должен развивать 100 л. с. Таким образом, с увели­чением действительного радиуса поворота сравнительно с расчетным потребная мощ­ность двигателя не изменилась.

Известно, что мощность внешних сопротивлений уменьшается с увеличением ра­диуса поворота. Оказывается, что если поворот сопровождается пробуксовкой фрик­циона, то, кроме мощности внешних сопротивлений, для поворота необходима допол­нительная мощность, затрачиваемая на трение во фрикционе. Эта мощность назы­вается тормозной   мощностью.

Теперь мощность, которую должен дать двигатель, или потребная мощность, уже не будет равна мощности внешних сопротивлений; к последней добавится тормозная мощность.

 

 

Яндекс.Метрика